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Abstract - Envelope methods play an important part 
in current FLF simulation. we focus On an 8rwe- 
lope method called multivariate steady-state method 
(MSSTD). The method solves the steady state of a cir- 
cuit especially in the cake when signals at two very dif- 
ferent frequencies me present, and harmonic balance is 
inefficient due to the shape of the signals. Different 
preconditionem for the iterative matrix solving method 
(GMRES) have been tested. 

Simulation results show that the preconditioner con- 
sisting of larger diagonal blacks decreases the number 
of iteration cycles needed and also the simulation time. 
However, other types of preconditioners should be stud- 
ied to find a mwe robust and reliable solver for this type 
of problem and therefore one new approach has been 
proposed. 

I. INTRODUCTION 

The basic problem in the simulation of RF circuits 
is the existence of a extreme range of operating fre- 
quencies, or time scales, in the same circuit. Widely 
separated time scales arise in various circuits and sys- 
tems, ranging from wireless/RF systems, VCOs, PLLs 
and FM discriminators to switched-capacitor filters, C- 
A modulators, mixers, switching power converters, and 
chirp circuits. The analysis of this kind of circuits is 
one of the most demanding challenges in circuit simu- 
lation because existing methods are effective either in 
strongly nonlinear problems with one-tone excitation 
or multi-tone problems with weak nonlinearities. 

In conventional time-domain techniques, the time 
step has to be chosen according to the high-frequency 
signal, but observing the signal as a whole requires a 
long simulation time and integration over an excessive 
number of periods to reach the steady-state. 

On the other hand, frequency-domain techniques like 
the Harmonic Balance method, are in&fficient when an- 
alyzing circuits which contain sharp waveforms, i.e., 
when signals are far from sinusoidal. In such cases, the 
large number of Fourier coefficients needed to accu- 
rately describe the unknown waveform causes a rapid 
increase in the memory consumption and simulation 
time. Furthermore, the diagonal dominance of the Ja- 
cobian matrix is lost when nonlinearities are strong 
causing convergence problems. 

The limited capabilities of established tools have 
opened a new field in RF and microwave circuit simu- 
lation: envelope methods. Roychowdhuy used mul- 
tivariate functions to describe time-dependent phe- 
nomena and formulated the problem with multivari- 
ate functions producing a multivariate partial differ- 
ential equation (MPDE) [7]. This paper discusses the 
mathematics of a finite-difference method for solving 
MPDE’s. The one-dimensional form of the method 
has been implemented in APLAC [I] circuit simula- 
tor earlier and called steady-state time-domain (SSTD) 
method [4], [6]. Therefore, this new method, which has 
now been implemented, is called a multivariate SSTD 
(MSSTD). Results with two different preconditionem 
are presented here, the focus being on the simulation 
times and number of iteration cycles. Finally, sugges- 
tions for future studies are presented. 

II. MULTIVARIATE STEADY-STATE ANALYTIC 
METHOD 

The traditional form of circuit equations is the 
Differential-Algebraic Equation (DAE) 

d(z) + f(z) = ‘4th (1) 

where q denotes the charge and f the resistive terms. 
The vector of excitations is b(t), and z(t) is the vector 
of the unknowns of the circuit. All variables are vector- 
valued. 

A circuit with multirate behavior can be represented 
efficiently using multiple time variables [7]. We study 
here only the two-dimensional case and denpte the vec- 
tor forms of a(t) and b(t) by f(tl, tz) and b(tl, tz), re- 
spectively. Now the original differential equation (1) is 
replaced with 

An MPDE is the n-dimensional form of this equa- 
tion. W: solve the steady staqe, so periodicity is re- 
quired: b(tl + Tl, tz + Tz) = b(tl, tz), where T1 and 
Tz are the periods of tl and t2, respectively. Then it 
is sufficient to solve the values of the unknowns when 
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tl E [O,T$ and tz E [O,T& Many proofs related to 
this were presented in [7], as well as three ways to solve 
the MPDE equation. More than two orders of magni- 
tude speedups compared to traditional transient anal- 
ysis were achieved. In the multivariate finite difference 
time domain (MFDTD) method, a two-dimensional 
grid is created by approximating the differential oper- 
ators with a numerical differentiation formula. Eq. (2) 
is discretized on a grid in the (tl, tz)-plane. Assume 
a uniform grid and denote & = (ihl,jhz), such that 
hl = T&Q and hz = Tzlmz, where m, and m2 are 
the numbers of samples with respect to t1 and tz, re- 
spectively. This leads to a set of nonlinear algebraic 
equations, which contain more unknowns than equ- 
tions. Therefore, the bi-periodic boundary conditions 
are used to eliminate additional unknowns. The cir- 
cuit equations in the two-dimensional form are written 
separately at every grid point, which creates a system 
of equations of dimension ml x rnz. Then the problem 
can be solved numerically and the results are the volt- 
ages of the circuit at all points of the two-dimensional 
grid. 

The block-structured and diagonally dominant Ja- 
cobian matrix improves the convergence [7]. How- 
ever, the MSSTD problem is not mathematically triv- 
ial. Different from the normal finite-difference prob- 
lem, where a response is needed at every point in the 
tw*dimensional grid, we have to solve the voltage at 
every point and for each node in the circuit. In addi- 
tion, the requirement of periodicity breaks the struc- 
ture of the matrix. 

A. Model for the MSSTD component 

The operation of APLAC is based on VCCSes [S] 
such that all device models are constructed from VCC- 
Ses. Now we derive a circuit model for a dynamic and 
static VCCS in the MSSTD analysis. 

When two time variables are used, the general form 
for the cwrent of the dynamic component is 

Due to the nonlinear charge dependency, we now apply 
the iteration formula 

i"+' = ik + ai 
au u=uk (u 

k+l - uE) 
' (5) 

where superscript k is the iteration index. For sim- 
plicity, the dependency of one voltage only is assumed. 
Applying this iteration formula to Eq. (4) leads to the 
general form of the current of the dynamic nonlinear 
component: 

where 

The equation can be presented with current sou~‘ces 
and VCCSes as shown in Fig. 1. Sources &&?& 

and g~j-lu~,$!l are VCCSes having controlling v&t- 

ages u::;,~ and $&. The value of the current so”rce 

J” depends on the voltages in the previous iteration; 
Jk = 0 if the circuit is linear. 

ik+’ 
or . . . . 

First, time is diicretized so that t1 = ihl and Fig. 1. Circuit model for dynamic component 
tg = jhz, where hl and hz are the time steps used 
with respect to periods T1 and Tg. Denote the GUI- The operation of a static component does not depend 
rent at a certain time moment with ii,j = i(ihl,jhz). on voltages at other time points and the current is 
Applying the Euler numerical integration formula to 
Eq. (3) yields .!%+I ai &I +ik. - ai 

4’33 - Qa-l,j + Qi,J - Qt,j-1 

%i = au ,iuf, w w au 
u=uf,, 

& (7) 

i,,j = 
.v’/ . - d 

hl hz 
(4) c .I* 
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corresponding to the circuit in Fig. 2. 
Eq. (6) is applied to all dynamic components and 

static components are modeled as in Eq. (7). After 
that, the equations are collected in a matrix equation 
vu = j, where the unknowns, u(t), are the node volt- 
ages of the circuit at all time points in the (Tl, Tz)-grid. 
T-he matrix equation can be solved directly by utilizing 
the matrix solving algorithms used in DC analysis. 

III. SOLVING MSSTD EQUATIONS 

In APLAC, both SPARSE and GMRES matrix- 
solving algorithms are implemented in MSSTD anal- 
ysis. For the sparse-matrix solver, the original circuit 
has to be duplicated at all desired time points. The 
problem size grows by the factor ml x m2. The size of 
the matrix expands rapidly and sparse matrix solving 
becomes inefficient. 

The iterative matrix-solving algorithms like GMWS 
need a good preconditioner to make them computa- 
tionally more efficient. One commonly used precondi- 
tioner is Jacobi preconditioning, where the precondi- 
timer matrix is equal to the inverse of the diagonal 
part. Therefore, we have tried to create a diagonal 
dominant matrix and use the diagonal blocks as pre 
conditioner. This type of preconditiona is generally 
used in harmonic-balance methods because of quite a 
simple implementation. 

Due to the importance of a good preconditioner, the 
structure of the matrix is crucial. It depends directly 
on the order of the unknown variables. The equations 
have to be ordered such that, first, the circuit at one 
time point is represented, then at another time point, 
etc. Then the dimension of the diagonal block is the 
number of nodes, and the elements outside the diagonal 
blocks are due to the time-dependency between the 
different time points. 

Two different preconditioners have been imple 
mented and tested. In the first case, only the separate 
diagonal blocks are included in the preconditioner, i.e., 
it contains the circuit at di&rent time points without 
any time dependency as shown in Fig. 3. d denotes the 
circuit matrix at one time point and matrices cl and c2 
of the same size include the dynamic terms correspond- 

ing to hl and hz, respectively. In this example, three 
samples are used with respect to both frequencies. 

Another alternative is to use the solution of the one 
dimensional problem as a preconditioner for the two- 
dimensional problem (Fig. 4). Then only the time de- 
pendency with respect to one time variable present. 
In this case, the preconditiona blocks are naturally 
much larger. This corresponds to solving the problem 
as many one-dimensional problems. 

IV. SIMULATION RESULTS 

To demonstrate the effectiveness of the MSSTD 
method in cases where the shape of the signal is rect- 
angular, a comparison with the HB analysis results is 
shown in Fig. 5. In this example, the MSSTD analysis 
took about half of the simulation time needed for HB 
analysis and the result is more accurate. 

Other properties of the MSSTD method are demon- 
strated next: CPU time consumption and the number 
of iteration cycles are focused on. 

A. Comparison between diffennt preconditioners 

Two different preconditioners were implemented so 
w to be available with the GMRES matrix solving al- 
gorithm. CPU times of these two alternatives are com- 
pared in Table I, where PREl and PRE2 refer to the 
preconditioners specified in Figs. 3 and 4. The dimen- 
sion of the problem is in column dim. Column iter in 

2131 



Table I shows the numbers of GMRES iteration cycles 
and the total number of inner iterations. 

TABLE I 
CPU TIMES WITH DlFFERENT PRECONDlTlONERS 

file dim PREX PRE2 

CPU iter CPU iter 
&Xl 2500 1.03 s 11/126 719 ms 11129 
ex2 4050 3.52 s 30/444 1.92 s 21/242 
ex3 12400 44.07 s 38/514 40.78 s 32 J47 

The simulation times with preconditiona PRE2 seem 
to be smaller. Also the .numbers of inner iterations 
in GMRES are quite dierent with different precon- 
ditioners. It is clear that larger preconditioner blocks 
improve the convergence in inner iterations. However, 
the number of GMRES iterations has been decreased, 
too. 

B. Increasing the number of samples 
[5] states that for applications to partial differential 

equations, Jacobian preconditioners may be useful, but 
should not be expected to have dramatic effects. For 
this type of problems, the multigrid approakh [2], [3] 
can give more promising results. The multigrid idea 
corresponds, in practice, to solving a problem with a 
smaller number of time points and wing interpolation 
to obtain an initial solution at all time points of the 
fine grid. As an introductory study, we solved the 
problem first with a smaller number of samples and 
used the result as an initializer for the final simulation. 
The simulation times obtained for ex3 are presented in 
Table II, where the column guess tells the number of 
samples used in previous simulation and as the basis 
of the new one. 

points guess CPU total CPU 
10x 10 40.78 s 40.78 s 
15 x 15 3 min 41 s 3 min 41 s 
15 x 15 10 x 10 7.65 s 48.43 s 
20 x 20 10 x 10 15.74 s 56.52 s 
40 x 40 20 x 20 46.95 s 1 min 43 s 

The simulation time with “15,15” points, doing with 
“10,lO” guess, decreases by over 90 %. Another ben- 
efit of increasing the number of samples gradually is 
the possibility to simulate cases which do not converge 
otherwise or converge very slowly. Preconditiona PREl 
has been used in these simulations, because it gives 
more freedom to change the number of samples with- 
out changing the size of preconditioner blocks. 

V. CONCLUSIONS 

A multivariate steady-state time-domain analysis 
has been implemented in APLAC [l]. Both the 
SPARSE and GMRES matrix solving algorithms are 
used, GMRES with two alternative preconditioners. 

The MSSTD method solves the steady-state of a cir- 
cuit especially in the case when signals at two very dif- 
ferent frequencies are present, and HB is inefficient due 
to the shape of the signals. 

The method has still to be developed to ensure con- 
vergence in all situations. The multigrid approach ap- 
pears promising and is worthy of close study. 
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