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Absiract — Envelope methods play an important part
in current RF simulation. We focus on an enve-
lope method c¢alled multivariate steady-state method
{(MSSTD). The method solves the steady state of a cir-
cuit especially in the case when signals at two very dif-
ferent frequencies are present, and harmonic balance is
inefficient due to the shape of the signals. Different
preconditioners for the iterative matrix solving method
{GMRES) have been tested.

Simulation results show that the preconditioner con-
sisting of larger diagonal blocks decreases the number
of iteration cycles needed and also the simulation time.
However, other types of preconditioners should be stud-
ied to find a more robust and reliable solver for this type
of problem and therefore one new approach has been
proposed.

I. INTRODUCTION

The basic problem in the simulation of RF circuits
is the existence of a extreme range of operating fre-
quencies, or time scales, in the same circuit. Widely
“separated time scales arise in various circuits and sys-
tems, ranging from wireless/RF systems, VCOs, PLLs
and FM discriminators to switched-capacitor filters, X-
A modulators, mixers, switching power converters, and
chirp circuits. The analysis of this kind of circuits is
one of the most demanding challenges in circuit simu-
lation because existing methods are effective either in
strongly nonlinear problems with one-tone excitation
or multi-tone problems with weak nonlinearities.

. In conventional time-domain techniques, the time
step has to be chosen according to the high-frequency
signal, but observing the signal as a whole requires a
long simulation time and integration over an excessive
number of periods to reach the steady-state.

On the other hand, frequency-domain techniques like
the Harmonic Balance method, are inefficient when an-
alyzing circuits which contain sharp waveforms, i.e.,
when signals are far from sinusoidal. In such cases, the
large number of Fourier coefficients needed to accu-
rately describe the unknown waveform causes a rapid
increase in the memory consumption and simulation
time. Furthermore, the diagonal dominance of the Ja-
cobian matrix is lost when nonlinearities are strong
causing convergence problems.

The limited capabilities of established tools have
opened a new field in RF and microwave circuit simu-
lation: envelope methods. Roychowdhury used mul-
tivariate functions to describe time-dependent phe-
nomena and formulated the problem with multivari-
ate functions producing a multivariate partial differ-
ential equation (MPDE) [7]. This paper discusses the
mathematics of a finite-difference method for solving
MPDE’s. The one-dimensional form of the method
has been implemented in APLAC [1] circuit simula-
tor earlier and called steady-state time-domain (SSTD)
method [4], {6]. Therefore, this new method, which has
now been implemented, is called a multivariate SSTD
(MSSTD). Results with two different preconditioners
are presented here, the focus being on the simulation
times and number of iteration cycles. Finally, sugges-
tions for future studies are presented.

II. MULTIVARIATE STEADY-STATE ANALYSIS
METHOD

The traditional form of circuit equations is the
Differential-Algebraic Equation (DAE)

g(=) + f(x) = b(t), 1)

where ¢ denotes the charge and f the resistive terms.
The vector of excitations is b(t), and () is the vector
of the unknowns of the circuit. All variables are vector-
valued.

A circuit with multirate behavior can be represented
efficiently using multiple time variables [7]. We study
here only the two-dimensional case and denote the vec-
tor forms of z(¢) and b(¢) by £(t1,¢2) and b(#1,£3}, re-
spectively. Now the original differential equation (1) is
replaced with

3q(2) + Oq(&)

An MPDE is the n-dimensional form of this equa-
tion. We solve the steady state, so periodicity is re-
quired: b(t; + Ti,t2 + To) = b(ly,¢2), where 71 and
T> are the periods of #; and ts, respectively, Then it
is sufficient to solve the values of the unknowns when

+ F(&) = b(t1, ta). (2)
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ty € [0,74 and t2 € [0,73]. Many proofs related to
this were presented in [7], as well as three ways to solve
the MPDE equation. More than two orders of magni-
tude speedups compared to traditional transient anal-
ysis were achieved. In the multivariate finite difference
time domain (MFDTD) method, a two-dimensional
grid is created by approximating the differential oper-
ators with a numerical differentiation formula. Eq. (2)
is discretived on a grid in the (#1,%2}-plane. Assume
a uniform grid and denote ¢; ; = (ih1, jha), such that
h1 = T1/my and hy = Ty /w3, where my and my are
the numbers of samples with respect to #; and g, re-
spectively. This leads to a set of nonlinear algebraic
equations, which contain more unknowns than equa-
tions. Therefore, the bi-petiodic boundary conditions
are used to eliminate additional unknowns. The cir-
cuit equations in the two-dimensional form are written
separately at every grid point, which creates a system
of equations of dimension m; x mg. Then the problem
can be solved numerically and the resulis are the volt-
ages of the circuit at all points of the two-dimensional
grid.

The block-structured and diagonally dominant Ja-
cobian matrix improves the convergence [7]. How-
ever, the M3STD problem is not mathematically triv-
ial. Different from the normal finite-difference prob-
lem, where a response is needed at every point in the
two-dimensional grid, we have to solve the voltage at
every point and for each node in the circuit. In addi-
tion, the requirement of periodicity breaks the struc-
ture of the matrix.

A. Model for the MSSTD component

The operation of APLAC is based on VCCSes [8]
such that all device models are constructed from VCC-
Ses. Now we derive a circuit model for a dynamic and
static VCCS in the MSSTD analysis.

When two time variables are used, the general form
for the current of the dynamic component is

Due to the nonlinear charge dependency, we now apply
the iteration formula

?:k+1 ~ ik di

k+1 14
Y+ U w
Y ( )1

u=uk

(5)

where superscript k is the iteration index. For sim-
plicity, the dependency of one voltage only is assumed.
Applying this iteration formula to Eq. (4) leads to the
general form of the current of the dynamic nonlinear

component:
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The equation can be presented with current sources

and VCCSes as shown in Fig. 1. Sources gf , juf*} .
E+1

12y are VOCSes having controlling volt-

k+1
,3—1°

and gf’j_lu
ages ufff jandu
J¥ depends on the voltages in the previous iteration;
J¥ = 0 if the circuit is linear.

The value of the current source

R+l
(o 4 . e [} .

dqg _ 8q  dq
P _ k+1 k k k+1 k k41
a3 Ottt O O
— Y Y v v
- q(u)' ') . » L]
First, time is discretized so that {; = ih; and Fig. 1. Circuit model for dynamic component

ta = jho, where hy and he are the time steps used
with respect to periods Ty and Th. Denote the cur-
rent at a certain time moment with 4;; = #(ihy, jhe).
Applying the Fuler numerical integration formula to
Eq. (3) yields

G — G

o iy — Q51
1,5 = hy .

T @

The operation of a static component does not depend
on voltages at other time points and the current is

g1 _ 08 k1, ok _ D k
Tl = [T B ul (7)
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Fig. 2. Circuit model for static component

corresponding to the circuit in Fig. 2.

Eq. (6) is applied to all dynamic components and
static components are modeled as in Eq. (7). After
that, the equations are collected in a matrix equation
yu = j, where the unknowns, u(¢), are the node volt-
ages of the circuit at all time points in the (17, T%)-grid.
The matrix equation can be solved directly by utilizing
the matrix solving algorithms used in DC analysis.

III. SoLving MSSTD EQUATIONS

In APLAC, both SPARSE and GMRES matrix-
solving algorithms are implemented in MSSTD anal-
ysis. For the sparse-matrix solver, the original circuit
has to be duplicated at all desired time points. The
problem size grows by the factor my x my. The size of
the matrix expands rapidly and sparse matrix solving
becomes inefficient.

The iterative matrix-solving algorithms like GMRES
need a good preconditioner to make them computa-
tionally more efficient. One commonly used precondi-
tioner is Jacobi preconditioning, where the precondi-
tioner matrix is equal to the inverse of the diagonal
part. Therefore, we have tried to create a diagonal
dominant matrix and use the diagonal blocks as pre-
conditioner. This type of preconditioner is generally
used in harmonic-balance methods because of quite a
simple implementation.

Due to the importance of a good preconditioner, the
structure of the matrix is crucial. It depends directly
on the order of the unknown variables. The equations
have to be ordered such that, first, the circuit at one
time point is represented, then at another time point,
etc. Then the dimension of the diagonal block is the
number of nodes, and the elements outside the diagonal
blocks are due to the time-dependency between the
different time points,

Two different preconditioners have been imple-
mented and tested. In the first case, only the separate
diagonal blocks are included in the preconditioner, i.e.,
it contains the circuit at different time points without
any time dependency as shown in Fig. 3. 4 denotes the
circuit matrix at one time point and matrices ¢; and ¢
of the same size include the dynamic terms correspond-

ing to hy and R, respectively. In this example, three
samples are used with respect to both frequencies.

d Ca cy
(&) d 1

Co d 1
Cl d Co

€] Co d

1 Cg d
€1 d ¢
1 cad
[& B 5] d

Fig. 3. Preconditioner with small diagonal blocks, PRE1

Another alternative is to use the solution of the one
dimensional problem as a preconditioner for the two-
dimensional problem (Fig. 4). Then only the time de-
pendency with respect to one time variable present.
In this case, the preconditioner blocks are naturally
much larger. This corresponds to solving the problem
as many one-dimensional problems.

d C2 Lé5]
cad c1
c2 d [5]
€1 d ¢
c1 cod
¢ cad
C1 d Co
€1 Ca d
¢ ead

Fig. 4. Preconditioner with larger diagonal blocks, PRE2

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the MSSTD
method in cases where the shape of the signal is rect-
angular, a comparison with the HB analysis results is
shown in Fig. 5. In this example, the MSSTD analysis
took about half of the simulation time needed for HB
analysis and the result is more accurate.

Other properties of the MSSTD method are demon-
strated next: CPU time consumption and the number
of iteration cycles are focused on.

A. Comparison between different preconditioners

Two different preconditioners were implemented so
as to be available with the GMRES matrix solving al-
gorithm. CPU times of these two alternatives are com-
pared in Table I, where PRE1 and PRE2 refer to the
preconditioners specified in Figs. 3 and 4. The dimen-
sion of the problem is in column dim. Column iter in
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Fig. 5. Voltage waveform compared to HB analysis

Table I shows the numbers of GMRES iteration cycles
and the total number of inner iterations.

TABLE 1
CPU TIMES WITH DIFFERENT PRECONDITIONERS

file dim PRE1 PRE2

CPU iter CPU iter
ex] 2500 1.03s 11/126 T7T19ms 11/29
ex2 4050 3.52s 30/444 1.92s 21/242
ex3 12400 44.07s 38/514 40.78s  32/47

The simulation times with preconditioner PRE2 seem
to be smaller. Also the numbers of inner iterations
in GMRES are quite different with different precon-
ditioners. It is clear that larger preconditioner blocks
improve the convergence in inner iterations. However,
the number of GMRES iterations has been decreased,
too.

B. Increasing the number of samples

[5] states that for applications to partial differential
equations, Jacobian preconditioners may be useful, but
should not be expected to have dramatic effects. For
this type of problems, the multigrid approach (2], (3]
can give more promising results. The multigrid idea
corresponds, in practice, to solving a problem with a
smaller number of time points and using interpolation
to obtain an initial solution at all time points of the
fine grid. As an introductory study, we solved the
problem first with a smaller number of samples and
used the result as an initializer for the final simulation.
The simulation times obtained for ex3 are presented in
Table II, where the column guess tells the number of
samples used in previous simulation and as the basis
of the new one.

TABLE II
INCREASING THE NUMBER OF SAMPLES GRADUALLY

points guess CrU total CPU
10 x 10 - 40.78 s 40.78 s
15 x 15 - 3min4ls 3 mindls
15 x 156 10x10 7.65 s 48.43 s
20x20 10x10 15.74 s 56.52 s
40 x40 20 x 20 46.95 s l1min43 s

The simulation time with ”15,15" points, doing with
"10,10" guess, decreases by over 90 %. Another ben-
efit of increasing the number of samples gradually is
the possibility to simulate cases which do not converge
otherwise or converge very slowly. Preconditioner PRE1
has been used in these simulations, because it gives
more freedom to change the number of samples with-
out changing the size of preconditioner blocks.

V. CONCLUSIONS

A multivariate steady-state time-domain analysis
has been implemented in APLAC [1}. Both the
SPARSE and GMRES matrix solving algorithms are
used, GMRES with two alternative preconditioners.

The MSSTD method solves the steady-state of a cir-
cuit especially in the case when signals at two very dif-
ferent frequencies are present, and HB is inefficient due
to the shape of the signals.

The method has still to be developed to ensure con-
vergence in all situations. The multigrid approach ap-
pears promising and is worthy of close study.
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